为什么数列的所有收敛子列的极限相同,那么此数列收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/19 14:47:37
为什么数列的所有收敛子列的极限相同,那么此数列收敛
数列收敛和数列极限存在

数列收敛是指数列存在极限,但不需知道是几,只需知道存在即可数列极限可以是一个值,也可以不存在证明数列收敛的题目不需要求出数列极限,只需要证明极限存在即可,所以这两者还是有点差别的

关于收敛数列的子数列与收敛数列极限相同的问题

我觉得你没有理解数列极限的研究对象,对于无穷多项的数列,我们才可以求它的极限,讨论它的敛散性,对于有限项的数列我们是不定义其极限的,自然更谈不上子数列,收敛等问题了,数列极限的表达式limxn如果写全

数列{an}的每个子列都含有一个以a为极限的收敛子列,证明数列{an}收敛于a.请给出过程,谢谢.

反证法.若{an}不以a为极限,则取ε=1,对任意的N,存在n0>N,使得|an0-a|>1,取N=1,得n1使得|an1-a|>1;取N=n1,得n2>n1,使得|an2-a|>1;.取N=nk,得

关于收敛数列极限的疑问

为了取一个充分大的N,使得n>n1和n>n2两个条件同时满足.

条件收敛的数列的子数列收敛么

首先,数列收敛就是数列有极限,(-1)^n*(1/n)偶数项和奇数项都是收敛的,极限都为0;其次,一个收敛数列其任意子数列必收敛,这可以结合数列收敛定义反证出;最后强调,子数列收敛针对任意子序列,不分

证明:如果一个数列有界,但不收敛,则必存在两个不同极限的收敛子列.

反证法:如果不存在两个不同极限的收敛子列,又数列有界,即所有子列的极限相同,(不能为无穷大了)根据数列极限与子列极限的关系,得原数列必收敛!矛盾!从而必存在两个不同极限的收敛子列.

收敛数列的数列的平均极限定理是什么

{Xn}收敛limXn=aSn=X1+X2+...+Xn则lim(Sn/n)=a

怎么理解“如果数列{Xn}收敛于a,那么它的任一子数列也收敛,且极限也是a"

具体的证明可以参照教材,如果您需要,我也可以给你列出证明过程.这里不做严格证明,我觉得你可以这样理解:数列{an}极限是a,说明它每一项“越来越”接近a.那么{an}的任意一个子列,它的每一项都来自于

证明:有界数列存在收敛的子列.

聚点定理:任意有界无穷数集至少有一个聚点.对此数列,若有无穷多个相同的项,则此以这些相同的项构成的数列的为该数列的收敛子列.若没有无穷多个相同的项,则该数列的每一个元素作为集合S的一个元素.由聚点定理

如何证明有界不收敛数列必有两个收敛于不同极限的子列?

证明:任取一收敛子列(一定存在)设其极限为a,则在a的一充分小领域外,一定有这一有界数列的无限项(仍然有界),从而有收敛子列其极限一定不等于a再问:在充分小的邻域外应该只有有限项了啊,因为从n>N开始

如果一个数列的级数收敛,那么这个数列一个无限的子列是否收敛,又如何证明呢?

这个数列的无限子数列也收敛,而且收敛到母数列的极限值,证明很简单.比如数列a1,a2,a3...an...收敛到A,它的子数列无非就是在这个数列中抽值,比如子数列是a2,a6,a11...am...,

一个发散的数列也肯能有收敛的子数列 举例

很简单呀1/n就是个发散数列但取子序列1/n[i]其中取n[i]=n²就是子数列就是1/n²收敛

数列{an}有界充要条件 该数列的任何一个子列均有收敛子列

在完成证明之前先引入一个结论:任一数列中都能取出一个单调子列.证:引入一个定义:如果数列中的一项大于在这个项之后的所有各项,则称这一项是一个“龙头”.下面分2种情况:情况1如果在数列中存在无穷多个“龙

收敛数列的极限为什么不是他的界

a(n)=[(-1)^n]/n,a(n)->0,a(2n)>0.a(2n-1)再问:Xn=(-1)^n×1/n的界怎么求,界的概念有点模糊再答:界,就是上界或下界.下界

证明:若有界数列an发散,则an存在两个收敛子列,分别收敛到两个不想等的实数

设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1

有收敛子列的数列是否收敛?

1,-1,1,-1,1,-1.该数列有收敛子列,但本身不收敛.

若一个数列的级数收敛,那么这个数列的子数列的级数是否收敛

嗯,要看是不是正项级数了,如果是正项的,那么成立.如果不是正想的级数,那么该结论未必成立.比如级数-1/n收敛,偶数项或者奇数项构成的级数都发散.再答:不好意思,上面例子写错了级数,要写成交错项的…是