利用单调有界原理证明下列数列极限存在,并求其极限.X1= ,X2= ,-Xn=

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/05 20:33:44
利用单调有界原理证明下列数列极限存在,并求其极限.X1= ,X2= ,-Xn=
利用单调有界数列必有极限存在准则,证明数列极限存在并求出

数列关系式a(n+1)=√(2+an)数学归纳法假设递增数列即a(n+1)》ana1=√2n=2a2=√(2+√2)a2>a1n=ka(k+1)>akn=k+1a(k+2)=√(2+a(k+1))>a

利用单调有界数列收敛准则证明数列极限存在

归纳法得:xn≥√ax(n+1)-xn=1/2×[a/xn-xn]=1/2×(√a+xn)(√a-xn)/xn≤0所以,xn单调减少所以,xn单调有界,极限存在

利用单调有界必有极限准则证明下列数列的极限存在并求极限,

x(n+1)=√(6+xn)1.x1-x2=10-4>0现设x(n-1)>xnxn-x(n+1)=√(6+x(n-1))-√(6+xn)=(x(n-1)-xn)/√(6+xn)+√(6+x(n-1))

单调有界数列必有极限如何证明

同济课本上对这个定理的说明是:对于这个定理我们不做证明,只是给出它的在数轴上的几何意义,你可以参看一下.若要考试这个问题不会考定理证明的,而是要你先用证明某个数列的单调性,然后再证明这个数列的有界性,

利用单调有界原理证明数列的收敛 并求极限

数列写成{a[n]}了哈.a[n]∈(0,1),且fn(a[n])=0所以a[n+1]+a[n+1]^2+...+a[n+1]^n=1-a[n+1]^(n+1)再问:幸苦了还是有点不懂为什么an属于0

设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.

首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数).(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0.这个是利用下面不等式的基

利用魏尔斯特拉斯定理证明单调有界数列必有极限(详细严谨的过程)

举单调升的列子,设{An}为单调升有界数列,则这个数列一定有极限.  证明,首先An是有界数列,它一定有上确界A,AnB+Alfa,对所有nk>n成立,其中Alfa=(A-B)/2,这与B是Ank的极

单调有界数列必有极限,若一数列单调递增有下界,如何证明其有极限

不一定有极限,单调有界数列必有极限是指单调增有上界或单调减有下界才是有极限

考研高数-利用单调有界准则证明证明数列极限存在

1.a《2X1=√(2+a)《2X(n+1)=√(2+Xn)《√(2+2)=2Xn有上界2X2=√(2+X1)=√(2+√(2+a))》√(2+a)=X1X(n+1)=√(2+Xn)》√(2+Xn-1

利用单调有界原理,证明数列xn收敛,并求其极限.

由题可得:Xn>=√a有下界,Xn/Xn-1=1/2(1+a/Xn²)≦1/2(1+a/(√a)²)=1所以单减有界所以Xn极限等于Xn-1极限,解得原式的极限为√a再问:Xn>=

利用单调有界原理求数列极限时,当证明出数列单调且有界时,那个界怎样证明就是数列的极限?

好像没有任何证据证明“界”=“极限”不过可以求得极限因递减数列Xn存在下界,所以Xn有极限AXn+1也有极限,所以可两边求极限lim(Xn+1)=lim(1/2(Xn^2+1)/Xn)等价于limXn

单调有界原理证明极限存在...

本题极限其实是一个很有名的常数,叫做欧拉常数,约等于0.5772.工程上一直要用到的,其地位不亚于π,e.我没用“单调有界”证明极限存在.但既然学过高等数学,这种方法应该都看得懂的吧.楼主也可以搜一下

证明单调有界数列必有极限

这个可以考虑数列的每一项的每一位都可以被控制了.然后小数后不管多少位都被控制住,在利用数列收敛的定义即可

单调有界数列必有极限 怎么证明

设{x[n]}单调有界(不妨设单增),那么存在M>=x[n](任意n)所以{x[n]}有上确界,记作l对任意正数a,存在自然数N,使得x[N]>l-a因为x[n]单增,所以当n>=N时,l-a

单调有界原理证明极限存在.

令f(n)=1+1/2+…+1/n-ln(n)f(n+1)-f(n)=ln(1-1/(n+1))+1/(n+1)

如何利用柯西收敛准则证明单调有界数列极限存在

不妨设数列单调增,因为有上界所以有上确界,设为A.则an0,存在aN>A-§,则由an单调增知,对任意的n,m>N,有A>an>A-§,A>am>A-§.又因为从而有|an-am|