如图所示 光滑的水平地面上放置一块质量m=4kg

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/31 19:24:44
如图所示 光滑的水平地面上放置一块质量m=4kg
在光滑水平地面上放置一个立方体木箱,木箱的质量M=2kg、边长L=20cm.一长L=1 m的轻质光滑细杆,一端固定一质量

没有图,猜想图应是下图所示的装置.已知:M=2千克,L1=20厘米=0.2米,L2=1米,m=2*根号3 千克求:(1)E总;(2)V箱(1)在开始时,全部静止,所以系统的机械能是(地面为零势能面)E

如图所示,足够长的木板质量M=10kg,放置于光滑水平地面上,以初速度v0=5m/s沿水平地面向右匀速运动.现有足够多的

(1)第1个铁块放上后,木板做匀减速运动,即有:μmg=Ma1,2a1L=v02-v12代入数据解得:v1=26m/s.(2)设最终有n个铁块能放在木板上,则木板运动的加速度大小为: an=

如图所示,光滑半圆轨道竖直放置,半径为R,一水平轨道与圆轨道相切,

子弹射入后子弹与球的共同速度为V=V.m/(m+M)=4米/秒由√gR≤V有:R≤1.6米...这样才能保证物块与子弹能一起运动到轨道最高点水平抛出.由2R(m+M)g+1/2(M+m)V1^2=1/

10.如图所示,足够长的木板质量M=10kg,放置于光滑水平地面上,以初速度v0=5m/s沿水平地面向右匀速运动.

(1)第1个铁块放上后,木板向左的加速度(取-):a=-μmg/M=-0.5m/s^2故:-2aL=-v0^2+vt^2-1=-25+vt^2vt^2=24vt=√24即:第1个铁块放上后,木板运动了

如图所示,在光滑绝缘的水平桌面上固定放置一光滑,绝缘的挡板ABCD

(1)由于可以到达D点,N点必然有速度,必然需要向心力.而且,电场力此时一定向右,大小为Eq.因此,需要的支撑力一定大于Eq,AB都是错的.选项C是对的.此时的向心力可以由电场力提供,支撑力为0.小球

如图所示 一质量M=3Kg的长方形木板B放在光滑水平地面上

光滑水平面AB系统动量守恒,没有滑离即最终达到共速,以右为正方向,由动量守恒定律得Mv-mv=(M+m)v1,解得末速v1=2m/s.这一过程中,m先向左减速,再向右加速,而M一直减速.当m减到0时由

已知斜面体和物体的质量为M,m,各表面都光滑,如图所示,放置在水平地面上.若要使m相对M静止,求:(1)水

斜面和水平面的夹角为A大小物体的加速度都为a=F/(M+m)又小物体受的力垂直斜面向上,所以小物体所受力,即支持力为F1=ma/cosA,同时G1=F1*sinA即mg=ma*sinA/cosA=ma

一竖直放置的光滑圆形轨道连同底座总质量为M,放在水平地面上,如图所示,一质量为m的小球沿此轨道做圆周运动,AC两点分别是

A、小球块在A点时,滑块对M的作用力竖直向上,所以N<Mg系统在水平方向不受力的作用,所以没有摩擦力的作用,所以A错误;B、小滑块在B点时,需要的向心力向右,所以M对滑块有向右的支持力的作用,对M受力

如图所示,楔形木块静置于水平粗糙地面上,斜面与竖直墙之间放置一表面光滑的铁球,斜面倾角为θ,球的半径为R,球与斜面接触点

A、以铁球为研究对象,分析受力情况,作出力图,根据平衡条件得知,竖直墙对铁球的作用力N2=F+N1sinθ>F,即竖直墙对铁球的作用力始终大于水平外力F.故A正确.B、由图得到,mg=N1cosθ,m

(2007•南通模拟)如图所示,楔形木块静置于水平粗糙地面上,斜面与竖直墙之间放置一表面光滑的铁球,斜面倾角为θ,球的半

A、以铁球为研究对象,分析受力情况,作出力图,根据平衡条件得知,竖直墙对铁球的作用力N2=F+N1sinθ>F,即竖直墙对铁球的作用力始终大于水平外力F.故A正确.B、由图得到,mg=N1cosθ,m

如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(

.当然就是说你根本爬不到一半高,它就会沿轨道落回去.就不会脱离轨道.这类似脑筋急转弯了当然除了这种情况,也有速度达到v0使得mv0²/2=2Gr+mv1²;其中m为小球质量,v1满

如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(半径比r小很多)

一个是高速Vo通过,应该不用解释,另一个是低速不脱离轨道,因为当速度大于这个低速Vo但不高于高速Vo时,就会因为小球超出圆心等高的点,即会在1/4圆周到1/2圆周(轨道顶点)中间某位置脱离轨道抛落,如

如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.

在第一次碰撞之后,木板做向左匀减速运动,重物做向右的匀减速运动,重物受到木板向左的摩擦力,木板受到重物向右的摩擦力,只要木板足够长且重物不静止.当木板静止时,木板将受到重物向右的摩擦力,就会向右匀加速

如图所示,有一半径为R的半球形凹槽P,放在光滑的水平地面上,一面紧靠在光滑墙壁上,在槽口上有一质量为m

在A→B过程中:m机械能守恒(凹槽与小球组成的系统动量不守恒)①(2分)在B→C过程中:凹槽与小球组成的系统动量守恒,机械能守恒,设凹槽质量为M,则小球到达最高点C时,M、m具有共同末速度.②(2分)

如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(半径比r小很多),现给小球以水平向

最高点的临界情况:mg=mv2r,解得v=gr=10×0.4=2m/s根据动能定理得,-mg•2r=12mv2−12mv02解得v0=25m/s.若不通过四分之一圆周,根据动能定理有:-mgr=0-1

如图所示,一质量为M、长为L的木板,放在光滑的水平地面上,在木板的右端放一质量为m的小木块

对m做力的分析,有一个方向向左的拉力F1,和向左的摩擦力f,要想是小木块移动,至少要F1=f=umg,由于是定滑轮,且地面光滑,则有F=F1,要使小木块移动l,则有W=Fl=F1l=umgl.毕业好多

位于光滑水平面上的小车上放置一螺线管,一个比螺线管长的条形磁铁沿着螺线管的轴线水平穿过,如图所示

假设磁铁右端是N极则磁铁向右运动时根据增反减同(来拒去留)线圈电流应该是顺时针的线圈可看作一个N极在左边的小磁铁与原磁铁同性相斥所以先向右加速当磁铁进入线圈内并准本从线圈右边出去时则产生相反向的电流(