如图轻质均匀直杆AO长为L,AB:OB=1:4

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/31 21:53:01
如图轻质均匀直杆AO长为L,AB:OB=1:4
ab是长为L的均匀带电细杆,P1和P2是位于在直线上的两点(P1在杆内离a距离L/4处,P2在杆外离b距离L/4处)ab

将均匀带电细杆分成四小段(均匀分开)命名杆正中为cab上电荷的静电场在P1处的场强即为bc段在P1处的场强ab上电荷的静电场在P2处的场强即为ab段在P2处的场强设ab带电量为Q则E1=0.5Q/0.

如图所示,均匀杆AB长为L,可以绕转轴A点在竖直平面内自由转动,在A点正上方距离L处固定一个定滑轮,细绳通过定滑轮与杆的

设绳子顶点为C,当杆水平时,绳子与杆构成一个直角三角形,AB=AC,三角形为等腰直角三角形,绳子CB与AB成45度角,杆受两个力平衡,T1*L*(√2/2)=G*L*1/2,当杆与水平成45度角时,A

如图长度为l的直导线在均匀磁场速度移动电动势

D对.分析:由于在图示方式运动中,导线没有切割磁感线,没有电动势产生.

求场强长为L的直导线AB上均匀的分布着电荷线密度为λ的电荷,求在导线的延长线上与导线一端B相距为d处p点的场强.

若为高中知识有技巧,可利用特殊点或对称性解决,但就本题而言只能用大学数学定积分解决.你可以选L上的一小段微积分变量,从d积到s+L,f(x)=ky/(d+x*x)*(d+x*x)d(x),y为拉姆达.

两根足够长的金属直金属导轨MN,PQ平行放置在倾角为θ的绝缘斜面上.一根质量均匀的直金属杆

(1)动能定理:W=EK2-0WG=mv²/2mgh=mv²/2mgSsinθ=mv²/2v=√2gSsinθ(2)金属杆与斜面间动摩擦因数为μ时,二个力做功:重力做功W

一根长L,质量为M的均匀直棒,其一端挂在一个水平光滑的轴上而静止在竖直位置,今有一子弹,质量为m,以水平速度v0射入棒的

棒对悬挂点的转动惯量为J=1/3ML²根据角动量守恒定律,有mv0L=mvL+Jω而根据线量角量关系,有v=ωL与上式联立,并将J代入,有mv0L=(mL²+1/3ML²

如图,质量为m,半径为R,质量均匀的闭合金属圆环被长为L的铁丝栓着悬于天花板上,其下方横放着一根通电直导线

B是不是环第一次摆到最低点时所用的时间大于π/2根号下(L+R)/g(后面是除吧)这样B一定对.如果A改成根号下2g(L+R)(1-cosθ)也对.D我觉得对,因为环运动中所受安倍力的方向具体很难判断

如图,长均为L、质量均为m的两根均匀直杆A、B,它们的上端用光滑铰链铰接,悬挂于天花板上,在距离两杆下端点均为L3

设A上铰支座对杆A的水平支座反力为Rx,竖直反力为Ry(就是支座对杆的力哈),杆C对A的作用力水平为Nx,竖直为Ny,则有:水平方向力平衡:Nx=Rx竖直力平衡:Ry+mg=Ny力矩平衡(A定点为力矩

如图所示,一均匀硬质直杆,重力为G,长度为L,支点在1/3L处,在其最右端施加F=200N的竖直向下的力刚好使得杆保持水

现在您解对了,您列的方程也正确,分开看是可以的,不过较为繁琐,没有必要.老师不应该判为错,只能说方法不是最好.

如图B-10所示,粗细均匀的金属环的电阻为R,可以绕轴O转动的金属杆OA的电阻为R/4,杆长为L,A端与环相接触,一阻值

1.绕轴O转动的金属杆OA,其上每一点的速度是不一样的,不能直接用公式E=BLv来计算.2.可以利用电动势是磁通量的变化率来求:设经过实践t金属杆OA转过的角度q=ωt,这段时间扫过的扇形弧长为qL,

若直线l与圆O交于不同的两点A,B,且向量AO·向量AB=2,则弦AB的长为

设AB中点为C,由于AO*AB=|AO|*|AB|*cosA=(|AO|*cosA)*|AB|=|AC|*2|AC|=2,所以|AC|=1,则|AB|=2|AC|=2.

一条放在地面上长为L的柔软匀质粗绳,向 上提其一端刚好离地时,它的重心位置升 高了______;长为L的均匀直钢管平放在

一条放在地面上长为L的柔软匀质粗绳,向上提其一端刚好离地时,它的重心位置升高了___L/2___;长为L的均匀直钢管平放在水平面上,现抬起一端使其与水平面成30度夹角时,它的重心位置升高了__L/4_

图示均匀细直杆AB长为l,质量为m,图示瞬间A点速度为v,则AB杆的动量大小为?

设AB的中点为o点,因AB为匀质,所以O点为AB的质心.1)AO=AB/2,根据数学模型可以证明推断出,O点竖直向下速度为V/2,2)因AB与地面夹角45度,可以知道B点有向右运动趋势,B点瞬时速度与

如图所示为放置在竖直平面内游戏滑轨的模拟装置,滑轨由四部分粗细均匀的金属杆组成,其中水平直轨AB与倾斜直轨CD长均为L=

(1)根据动能定理得,12mv12-Ek0=-μmgLcosθ-μmgL代入解得v1=12m/s≈3.4m/s(2)小球第一次回到B点时的动能EK1=12mv12=6J,继续运动,根据动能定理得,mg