如果矩阵的秩为r,那么任意r个线性无关的

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/12 12:50:47
如果矩阵的秩为r,那么任意r个线性无关的
如何证明:任何秩为r的矩阵均可表示成r个秩为1的矩阵的和?

证明方法有很多,这里用一个方程的思想R(A)=r1,R(B)=r2r(A+B)=r3作分块阵(A,B),设这个分块阵为秩为r4显然r1+r2>=r4列方程(A,B)X=0及(A+B)X=0可以知道,第

假设s×n矩阵A的秩为r.证明Ax=θ的任意n-r个线性无关的解都是其基础解析.

首先有结论:Ax=0的基础解系含n-r个解向量.证明:设a1,...,an-r是Ax=0的任意n-r个线性无关的解要证a1,...,an-r是Ax=0的基础解系,只需证Ax=0的任一解向量b都可由a1

证明 如果一个s*n矩阵A的秩为r,则有s*r的列满秩矩阵B和r*n行满秩矩阵C使得A=BC

矩阵的满秩分解,我以前回答过同样的问题.见链接.貌似有一处笔误:应该是“现在将T分解,T=U*V”而不是“现在将T分解,B=U*V”

证明任意一个秩为r的的矩阵A可以表示为r个秩为1的矩阵之和,而不能表示为r-1个秩为1的矩阵之和.

我来替刘老师回答吧对于A=PDQ^T,其中D=diag{d_1,d_2,...,d_n}把P和Q按列分块成P=[p_1,p_2,...,p_n],Q=[q_1,q_2,...,q_n],那么用分块矩阵

线性代数.证明:秩为r的矩阵可表示为r个秩为1的矩阵之和

秩为r的矩阵表示成向量的形式[A1A2A3.Ar...AN],不妨射前r个线形无关,后N-r个可以被前r个线形表示.此矩阵[A1A2A3.Ar...AN]=∑[00...Ai00...x1i*Aix2

证明:秩为r的矩阵可表示为r个秩为1的矩阵之和

这个题目比较简单我们设矩阵的阶数是n那么它的秩为r,设X1,X2,X3,..Xr是它的极大无关组那么我们知道X(r+1),...Xn都是可以由上面线性表式出来的把它们写出来就后那么利用矩阵的拆分可以知

一道线性代数的证明题证明:秩为r的对称矩阵可以表示成r个秩等于1的对称矩阵之和.谢谢!

对称矩阵?就当元素都是实数了那么是对称矩阵可以对角化,即A=H∧H'=H∧1H'+H∧2H'+H∧3H'+.H∧kH'+.H∧NH'其中∧k是k行k列为特征值λk的秩等于1的对称矩阵

证明:秩为r的对称矩阵可表为r个秩为1的对称矩阵之和

证明:对称矩阵都可以正交相似对角化,即存在正交矩阵O使得A=O'*diag{a1,a2,...,an}*O.rk(A)=r说明对角元a1,a2,...,an中有r个非零,不妨设为前r个,则A=O'*d

判断题:若矩阵A的秩为r,则A中任意r+1阶子式都为0.

这是对的知识点:1.若A中有非零的r阶子式,则r(A)>=r2.若A的所有r+1阶子式都为0,则r(A)

问个线性代数题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×r矩阵B与秩为r的r×n矩阵C使A=BC

这个叫做矩阵的满秩分解,《矩阵论》上的定理.证明:A是m×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵100...00010...00001...00...000...00就是左上角是

如果矩阵为m阶,是不是这个矩阵就有m个特征值呢?如果这个矩阵有r个非零特征值,是不是就矩阵的秩为r呢?

如果矩阵为m阶,是不是这个矩阵就有m个特征值呢?是.(特征多项式的重根按重数计算)如果这个矩阵有r个非零特征值,是不是就矩阵的秩为r呢?是.再问:矩阵的相似与合同是什么关系呢?相似一定合同,但合同不一

线性方程组同解问题2线性方程组同解 那么他们的秩相同 为什么? 比如要证明r(A)=r(AT) A为任意m*n矩阵 这里

矩阵相当于映射,矩阵奇异时,映射是多对1的;m*n矩阵A就是将n维空间的点映射到m维空间(保持原点映为原点),其映射核定义为应到m维空间的原点的所有点;其秩则是像所能占据的最大的空间维数.映射核的维数

设m×n矩阵A的秩为r.证明:A可以表示成r个秩为1的矩阵之和

因为R(A)=r,所以可以用一系列的行初等变换把A化为行阶梯形B,即存在可逆阵P,使PA=B;B中只有r行含非零元素,B可以写成r个矩阵的和B=C1+C2+…+Cr,其中Ck(1≤k≤r)的第k行是B

判断题:若矩阵A的秩为r,矩阵A中任意r阶子式不等于0

错误.如:123401340000秩为2.但2阶子式3434等于0.满意请采纳^_^.

证明秩为r(r>0)的mXn矩阵A可分解成为r个秩为1的mXn矩阵的和.

利用初等变换构造分解如图.经济数学团队帮你解答.请及时评价.谢谢!

(ii) 设A,B为n阶方阵,r(AB)=r(B),证明对于任意可以相乘的矩阵C均有r(ABC)=r(BC).

证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基

证明:秩为r的矩阵可以表示为r个秩为1的矩阵之和

因为R(A)=r,所以可以用一系列的行初等变换把A化为行阶梯形B,即存在可逆阵P,使PA=B;B中只有r行含非零元素,B可以写成r个矩阵的和B=C1+C2+…+Cr,其中Ck(1≤k≤r)的第k行是B