已知n阶矩阵q可逆则r(a)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/09 22:32:20
已知n阶矩阵q可逆则r(a)=
1、 A为n阶非零矩阵,A^5=0,A+E与A-E是否可逆 2、设n阶矩阵A(n>2),R(A)=n-2,则|2A+3A

1(A+E)(A^4-A^3+A^2-A+E)=A^5-A^4+A^3-A^2+A+A^4-A^3+A^2-A+E=A^%+E=E所以A+E可逆逆矩阵为A^4-A^3+A^2-A+E(A-E)(A^4

设A为m*n矩阵,P是m阶可逆矩阵,Q是n阶可逆矩阵,证明:r(A)=r(PA)=r(AQ)=r(PAQ)

教科书中应该有这样的两个结论:1.初等变换不改变矩阵的秩2.可逆矩阵可以表示成初等矩阵的乘积由P,Q可逆,所以它们可以表示成初等矩阵的乘积所以PA相当于对A做若干初等行变换,它的秩不变,即仍是A的秩同

设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,

提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.

已知 A满足A平方=A ,E为单位矩阵,证明:A 可逆,并求其逆阵.(2)r(A)+r(A-E)=n .

由A平方=A得A(A–E)=0所以A–E的列向量都是AX=0的解,所以r(A–E)

设A使一m×n矩阵,B ,C 分别为m阶,n阶可逆矩阵,证明:r(BA)=r(A)=r(AC)

任何一个可逆阵,可以写成若干个初等阵的积左(右)乘一个初等阵,相当于做一次初等行(列)变换所以一个可逆阵乘一个阵,相当于对矩阵做初等变换而初等变换不改变矩阵的秩所以命题成立

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B

知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2

设P,Q为可逆矩阵,且PA,AQ有意义,则r(PA)=r(AQ)=r(A)

P,Q是可逆矩阵,则可表示为初等矩阵的乘积PA,AQ相当于对A实施一系列的初等变换,故秩不变

已知n阶对称矩阵A(未必可逆)满足A^=2A,证明A-I是正交矩阵

A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握

设n阶矩阵a可逆,则对任意的n*m矩阵B,有R(AB)=R(B) 这个对不

对的对的定理:两个矩阵乘积的不大于每一因子的秩,特别当有一个因子是可逆矩阵时,乘积的秩=另一个因子的秩.

证明有限个n阶可逆矩阵乘积可逆,即A,B均为n阶可逆矩阵,则AB为可逆矩阵

AB*B^(-1)*A^(-1)=AEA^(-1)=AA^(-1)=E(E为单位矩阵)从而AB为可逆矩阵,逆矩阵为B^(-1)*A^(-1)

设a为n阶可逆矩阵,则r(A)=?

可逆等价于满秩从Gauss消元法也可得r(A)=n

设m*n矩阵A,m阶可逆矩阵P及n阶可逆矩阵Q,矩阵B=PAQ,证明:r(A)=r(B)

由于P与Q可以写成有限个初等矩阵的乘积,例如设P=P1P2...Ps,Q=Q1Q2...Qt,所以B=PAQ=P1P2...PsAQ1Q2...Qt,而矩阵A左乘或者右乘初等矩阵相当于对矩阵A做了初等

设A为m×n矩阵,C是n阶可逆矩阵,A的秩为r1,B=AC的秩为r,则( ) A.r>r1 B.r=r1 C.r

注意到AC的行列数与A相同,故A右乘C实际上就是对A进行初等列变换,故r=r1

设A是N阶可逆矩阵,A1是A的前r行构成的r*n矩阵,

线性方程组A1=b--这是什么线性方程组再问:少写了个x应该是A1X=b再答:这是什么题呀,A1x是r行,b是n行,不能相等呀再问:是呀,太坑人了。不过要谢谢老师再答:你只要记住:行满秩时一定有解,若

已知A ,B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA是可逆矩阵.

只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A