A半正定证明A的伴随矩阵也半正定

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/17 13:02:26
A半正定证明A的伴随矩阵也半正定
高等数学线性代数问题设A,B为n阶正定矩阵,则A*B*(A的伴随矩阵乘以B的伴随矩阵)一定是正定矩阵.这句话正确吗? 求

是错的.关键的是A*B*未必是对称的.即(A*B*)^T未必等于A*B*.注意:正定矩阵首先是对称矩阵.

如果A是正定矩阵,证明A的逆矩阵也是正定阵

若A是正定的,则由1.4可知:存在实可逆矩阵C使A=CTC∴A-1=(CTC)-1=C-1(C-1)T∵C可逆∴C-1也是实可逆矩阵∴有A-1也是正定矩阵.

A是n阶正定矩阵,证明A的伴随矩阵也是正定矩阵

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

A是可逆矩阵,证明A的伴随矩阵的逆等于A的逆的伴随矩阵

由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

怎么证明矩阵的伴随矩阵是正定矩阵

这个简单,正定阵的充要条件是特征值全是正数,我们有一个定理是可逆矩阵A的特征值是a,则A*的特征值一定是是|A|/a.这说明A*的正定性与A正定性有一定关系因此若能证明A是正定的则A*一定是正定的,若

怎样证明矩阵A为正定矩阵

正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,

证明:如果a是n阶正定矩阵,则a*及a+a*也是正定矩阵

1、对称性显然2、a*=|a|a^(-1)3、a正定则特征值全为正,从而a^(-1)的特征值为正4、容易看出a*,a+a*的特征值为正,正定

设mxn实矩阵A的秩为n,证明:矩阵A^TA为正定矩阵.

证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^

实对称矩阵A正定的充要条件是A的伴随矩阵为正定的,为什么?

必要性:adj(A)=A^{-1}/det(A)因此adj(A)正定充分性的反例:A=-1000-1000-1adj(A)=-A

A,B可交换且是对称半正定矩阵,证明AB是对称半正定矩阵.注意是半正定!

A,B是对称的,可交换的故他们可同时对角化.且AB可与其同时对角化.A,B是半正定的,对角化后对角线上的结果是非负的.故AB对角化后的结果对角线上非负.故AB是半正定的.另外对称是显然的.再问:为什么

已知A是n阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵.

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

设实矩阵A,B都是正定矩阵,证明A+B也是正定矩阵.

搞清楚正定的意义就很容易证明了.矩阵A是正定的等价于对于任意非零向量a,都有a'Aa>0;如果A、B都是正定的,那么对于任意非零向量a,都有a'Aa>0;a'Ba>0;显然对于任意非零向量a,就有a'

请证明:矩阵A的伴随矩阵正定,则矩阵A正定,谢谢!

这个我会叻特征值有一个性质:n阶矩阵A与他的转置矩阵A(T)有相同的特征值.证明如下:因为A的伴随矩阵正定,所以特征值严格大于零.所以A的特征值大于零.所以A正定

证明设矩阵A是正定矩阵,证明A-1次方也是正定矩阵

你说的是A的逆吧.A的特征值全为正,A逆的特征值都为A特征值的倒数,所以也全为正,所以正定.再问:�ܲ���˵˵ȫ���

设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.

证:对任一n维向量x≠0因为r(A)=n,所以Ax≠0--这是由于AX=0只有零解所以(Ax)'(Ax)>0.即有x'A'Ax>0所以A'A为正定矩阵.注:A'即A^T

证明:(半)正定矩阵A都可以写成另一个(半)正定矩阵B的平方,即A=B^2

A(半)正定,则A对称.设A的特征值分解为A=QDQ^T,其中Q是正交阵,D是对角阵,D=diga(d1,d2,...,dn).由于A(半)正定,故D(半)正定,于是di>0(di>=0),1=0),

A,B都是n阶半正定矩阵,证明:AB的特征值都≥0

首先,如果A正定B半正定的话可以利用相似变换,AB相似于A^{-1/2}(AB)A^{1/2}=A^{1/2}BA^{1/2},所以特征值都>=0然后利用特征值的连续性,AB的特征值可以看作(A+tI