设 λ=0 是 n阶方阵 A的特征值,则方程组 Ax=0 有非零解

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/05 03:29:55
设 λ=0 是 n阶方阵 A的特征值,则方程组 Ax=0 有非零解
设n阶方阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

设n阶方阵A的特征值为0,1,……,n-1,证明:A+E可逆

设A的特征值为λ,则A+E的特征值为λ+1(这儿使用的是公式:f(A)的特征值为f(λ))从而因为A的特征值为0,1,……,n-1,所以A+E的特征值为1,2,……,n,从而|A+E|=n!不等于0,

设n阶方阵A满足A²=2A.证明A的特征值只能是0或2

证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.

设A为N阶方阵,A的m次方=0,m是自然数,则A的特征值为

A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.

设n阶方阵的秩小于n-1试证明A的伴随矩阵A*的特征值只能是0

假设A*不等于0,则根据A*定义,A的某个n-1子式行列式不等于0,也就是那个n-1阶子式的行向量线性无关,所以A必然有n-1行线性无关,和A的秩小于n-1矛盾,所以A*肯定是0矩阵,其特征值必然是0

设n(n>=3)阶方阵A恰有一个特征值为0 则R(A)=?

n-1方阵A相似于一个若尔当矩阵J(上三角阵)J的主对角元都是特征值,“恰好”有一个特征值是0说明J的某一行全为零其他的行都不为0.所以说矩阵的秩就是n-1

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

设A为n阶方阵,且满足A^2-3A+2E=0,证明A的特征值只能是1或2

设A的特征值是a,则a^2-3a+2是A^2-3A+2E的特征值.由已知A^2-3A+2E=0,而零矩阵的特征值只能是零,所以a^2-3a+2=0,即(a-1)(a-2)=0.所以a=1或a=2.即A

设n阶方阵A的各列元素之和为5,则A的一个特征值是

A的一个特征值是5A的特征值是|λE-A|=0的根,考虑方阵λE-A,他的各列元素之和是λ-5因为λE-A是把A取负再把每一列的某个元素加上一个λ.这样根据行列式的性质,通过变换:把第2至第n行各加到

设λ为方阵A的特征值,证明λ²是A²的特征值.

(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值

一道线性代数的题目设a,b是n维列向量,a' =0,n阶方阵A=E+ab',n>=3,则在A的n个特征值中,必然____

这里,先给说一个结论,很好证的就是如果x是阵C的特征值,那么E+C的特征值为1+xa'b≠0,可以知道ab'也不会为0,而r(ab')

设入不等于0是m阶方阵Am*nBn*m的特征值,证明入也是n阶方阵BA的特征值

λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λx=ABx=0,得λ=0,矛盾).所以Bx是BA的属于特征值λ的特征向

设A是n阶方阵,A有n个不同的特征值是A与对角相似的?条件...

填入:充分若A有n个不同的特征值,则A与对角相似.但逆不成立.

设A是n阶方阵,且|5A+3E|=0.则A必有一个特征值为

因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.

设A为n阶方阵,证明:det(E-A*A)=0,则1或-1至少有一个是A的特征值.

E-A*A=(E-A)*(E+A)det(E-A*A)=det[E-A)*(E+A)]=detE-A)*det(E+A)=0sodetE-A)=0ordet(E+A)=0ifdetE-A)=0,1is

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0

设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a

设λ=0是n阶方阵A的一个特征值,则|A|=?

行列式的值等于特征值乘积0

设A为n阶方阵,Ax=0有非零解,则A必有一个特征值?

必有一个特征值为零Ax=0有非零解表明A的秩