作业帮 > 数学 > 作业

四边形ABCD是园o的内接正方形,P是弧AB的中点,PD与AB交于E点,求PE:AE的值.

来源:学生作业帮 编辑:百度作业网作业帮 分类:数学作业 时间:2024/08/19 09:24:27
四边形ABCD是园o的内接正方形,P是弧AB的中点,PD与AB交于E点,求PE:AE的值.
【根号下(4-2倍根号2)】除以2,所以过程做不出来。
四边形ABCD是园o的内接正方形,P是弧AB的中点,PD与AB交于E点,求PE:AE的值.
连PO交AB于F.令⊙O的半径为r,则容易算出:
AB=AD=√2r.
∵PA=PB,∴OF⊥AF,且AF=AB/2=√2r/2.  不难算出:FO=AF=√2r/2.
又PF=PO-FO=r-√2r/2.
∴PA=√(AF^2+PF^2)=√[(√2r/2)^2+(r-√2r/2)^2]
=√(r^2/2+r^2-√2r^2+r^2/2)=√(2-√2)r.
∵P、A、B、D共圆,∴∠PBE=∠ADP,又∠PEB=∠AED,∴△PBE∽△AED,
∴PE/AE=PB/AD=PA/AD=√(2-√2)r/(√2r)=√(4-2√2)/2.