设矩阵A,问A能否对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/09 00:30:58
设矩阵A,问A能否对角化
下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵

|A-λE|=(2-λ)(3-λ)^2.所以A的特征值为2,3,3(A-2E)X=0的基础解系为a1=(1,0,0)'.(A-3E)X=0的基础解系为a2=(0,1,0)',a3=(-2,0,1)'.

怎么判断一个矩阵能否对角化

1.所有特征根都不相等,那么不用说,绝对可以对角化2.有等根,只需要等根(也就是重特征值)对应的那几个特征向量是线性无关的,那么也可以对角化,如果不是,那么就不能了.综合起来是说的:有n个线性无关的特

证明题:设A为n阶矩阵,且A^2-A=2E.证明A可对角化.

这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x&#

如果矩阵A可逆,则A可对角化.对不对

对的人家说不对的原因是:矩阵A存在相似对角阵的充要条件是:如果A是n阶方阵,它必须有n个线性无关的特征向量.至于如何看A是否存在相似矩阵,只须求出其特征值和特征向量即可看出,公式为AX=λX,其中X为

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

证明:设A为n阶矩阵,A的平方等于A ,证明A一定能相似对角化.

一楼用《矩阵论》来解可能LZ不懂啦.其实就用《线性代数》也能搞定的.A^2-A=0(此处的0表示零矩阵)那么根据秩的不等式:r(A)+r(I-A)-n

矩阵相似对角化问题求特征值,并问其是否可以对角化如果A相似于B 那么A是否能对角化?为什么?

这题很基本啊...看下面的再问:我这道题的问题出在特征方程了。。。。我算的特征方程是这个算出来特征值是0,0,1重根2不等于3-r(特征方程),故不能相似对角化。。。可是B为实对称矩阵又是能相似对角化

设A=[0 0 1;1 1 x;1 0 0].问当x为何值时,矩阵A能对角化?

矩阵可对角化的充要条件是对于每个特征值αi,有αi的重数等于度数也就是说,比如矩阵A可以对角化,且有一个特征值a且a为5重根,则对于a必须有5个线性无关的特征向量.这题A=[001;11x;100]A

矩阵AB=BA A,B对角化,证明A+B也对角化

AB=BA意味着A和B存在公共特征向量,再由条件可以得到A和B可以同时对角化.

设A为2阶矩阵,且|A|=-1,证明A可以对角化

A为2阶矩阵,且|A|=-1,说明A有一个正的特征值,一个负的特征值,也就是两个不同的特征值.n阶矩阵有n个不同的特征值必可相似对角化,所以A可以相似对角化再问:A可也能只有一个正的或者负的特征值啊再

设A等于460负3负50负3负61,A能否对角化,若能对角化,求出其可逆矩阵P,使得P负1AP对角阵

怎么又问一次,上次的回答不行?我负责到底先求出A的特征值:-2,1,1再求特征值对应的特征向量,得P=[-1-20;110;101]P^(-1)AP=diag{-2,1,1}P的逆=[120;-1-1

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵.

|A-λE|=1-λ-1-222-λ-2-2-11-λc1+c3-1-λ-1-202-λ-2-1-λ-11-λr3-r1-1-λ-1-202-λ-2003-λ=(-1-λ)(2-λ)(3-λ).所以A

求做大学数学题证明:设A为n阶矩阵,但 ,证明A不能相似对角化.

好像题目不对啊,n阶矩阵不能相似对角化?这是有条件才可以成立的,你没给条件怎么证明..

设A是n阶矩阵,A不为0矩阵但A^3=0,证明A不能相似对角化.

证明:否则,假设A相似与对角矩阵D,即存在可逆矩阵T使得A=T逆*D*T故A^3=T逆*D^3*T=0得:D^3=0又D为对角矩阵,易知D=0从而A=0矛盾以上回答你满意么?

设A可逆矩阵且可对角化,证明A^(-1)也可以对角化

证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/

矩阵AB=BA A,B对角化,怎么证明A+B也对角化

有一个定理:AB=BA,A,B都相似于对角阵.则存在公共的满秩方阵P.使P^(-1)AP与P^(-1)BP同时为对角形.这个定理还可以推广到{A1,A2.……,Ak}的情况:AiAj=AjAi(i.j

设矩阵A,第一行(1 0 2)第二行(0 2 0)第三行(2 0 1)问矩阵A能否对角化?

102020201这是实对称矩阵,可对角化再问:能不能不用实对称矩阵做,要具体步骤。谢谢老师。再答:那你就一步一步,求出特征值,求出重根特征值对应的齐次线性方程组的基础解系,A有3个线性无关的特征向量

已知矩阵A可对角化,证明A的伴随矩阵也可对角化

证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1

设A为可逆矩阵,证明:如果A可相似对角化,则A的可逆阵也可以相似对角化

证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/