作业帮 > 数学 > 作业

如图,点P,Q,R分别在△ABC的边上AB、BC、CA上,且BP=PQ=QR=RC=1,那么,△ABC面积的最大值是(

来源:学生作业帮 编辑:百度作业网作业帮 分类:数学作业 时间:2024/08/10 19:07:13
如图,点P,Q,R分别在△ABC的边上AB、BC、CA上,且BP=PQ=QR=RC=1,那么,△ABC面积的最大值是(  )
A.
3
如图,点P,Q,R分别在△ABC的边上AB、BC、CA上,且BP=PQ=QR=RC=1,那么,△ABC面积的最大值是(
首先,若以Ⅰ,Ⅱ,Ⅲ,Ⅳ分别记△APR,△BPQ,△CRQ,△PQR,
则S,S,S均不大于
1
2×1×1=
1
2.
又∵∠PQR=180°-(∠B+∠C)=∠A,
∴h2≤h1(h1,h2分别为△QRP,△APR公共边PR上的高,因若作出△PQR关于PR的对称图形PQ′R,这时Q′,A都在以PR为弦的含∠A的弓形弧上,且因PQ′=Q′R,所以Q′为这弧中点,故可得出h2≤h1).
从而S1≤S
1
2,这样S△ABC=S+S+S+SN≤4×
1
2=2
最后,当AB=AC-2,∠A=90°时,
S△ABC=2即可以达到最大值2.
故选B.